Abstract
Hole-transporting materials (HTMs) play a critical role in realizing efficient and stabilizing perovskite solar cells (PSCs). Here, three molecules with different isomers of thienothiophene were investigated theoretically by controlling S atoms position on the thienothiophene-bridge. Consequently, the two electron-rich S atoms on the same side have a greater effect on the HOMO and the effective face-to-face stacking. Thus, TT-2,3-b-TPA exhibits more matched energy level, better optical properties, hole mobility and stability, and also shows better interfacial interactions and charge transfer capability at the HTM/perovskite interface, which may develop a potential HTMs instead of traditional spiro-OMeTAD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.