Abstract

To probe the cooperativity of charge transfer between organoimido and hexamolybdate, and enhance the second-order nonlinear optical (NLO) response of organoimido derivatives of hexamolybdates, electronic structures and second-order NLO properties of a series of charge-transfer covalently bonded organoimido derived hexamolybdate complexes with donor-(π conjugated bridge)-acceptor-(π conjugated bridge)-donor or acceptor-(π conjugated bridge)-donor-(π conjugated bridge)-acceptor structures were studied by density functional theory. Studies show that different combinations of the donor, acceptor, heterocycle, –C≡C– and –N=N– moieties, and orientation of heterocycle remarkably affect the second-order NLO responses. The complexes containing electronic acceptor matched with the direction of charge transfer possess remarkable large molecular second-order polarizabilities. Electronic transitions to crucial excited states show that x-polarized transition, contributed to the off-diagonal second-order polarizabiliy tensor (βzxx), possesses lower excited energy compared with z-polarized transition which accounted for the diagonal second-order polarizabiliy tensor (βzzz) and thus led to the large in-plane nonlinear anisotropy (u = βzxx/βzzz) value, as well as good two-dimensional (2-D) second-order NLO properties. These complexes can be used as excellent 2-D second-order NLO materials from the standpoint of both large β and u values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call