Abstract
ABSTRACTThe structural, stability, electronic, mechanical, vibrational and thermodynamic properties of rare-earth intermetallic compound Rh3Ce have been explored systematically by using first-principle calculations. The evaluation of the equilibrium lattice parameters were obtained firstly. Remarkably, the result of calculated unit cell volume, derived by the total energies as a function of volume, is consistent with other results. Next, the values of cohesive energy (Ec), formation enthalpy (ΔH) have verified that Rh3Ce is a stable compound. In addition, the band structure and the total density of states indicate a metallic behaviour. Furthermore, the Mulliken charges were calculated to understand the bonding in Rh3Ce compound. Otherwise, the elastic constants(Cij) as well as other modulus were also calculated to evaluated the mechanical properties of Rh3Ce. Phonon dispersion curves for Rh3Ce were depicted to access the vibrational properties. Finally, the thermodynamic properties of Rh3Ce were summarised range from 0 to 60 GPa, 0 to 1800 K, respectively. We also pointed out that the thermal expansion(α), heat capacity(Cv), entropy(S), Debye temperature(Θ) and Güneisen parameter (γ) change under pressure and temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.