Abstract

In photosynthesis, calcium is crucial for oxygen evolution. In the absence of Ca(2+), the Kok cycle has been proven to stop at S2 with Yz•. To explore the reason, photosystem II (PSII) S2 models (in total 32452 atoms) with different metal ions (Ca(2+), Sr(2+), and K(+)) or without Ca(2+) involved in the oxygen evolution complex (OEC) have been theoretically studied based on the previous dynamic study of PSII. It is found that the portion of the Mn1 d-orbital decreases in the highest occupied molecular orbitals for Ca(2+)-depleted PSII. This feature is unfavorable for the electron transfer from the OEC to the Yz•. Furthermore, the proton donor-acceptor distance was found elongated by the alternation of the binding water in the absence of Ca(2+). The isolated vibrational modes of the key water molecules along the path and their high frequency of the OH stretching modes also suggested the difficulty of the proton transfer from the OEC toward the proton exit channel. This work provides one mechanistic explanation for the inactivity of Ca(2+)-depleted PSII.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.