Abstract

The adsorption and dissociation reactions of hydrogen sulfide (H2S) on the Pt atom anchored graphene (Pt-graphene) surfaces were investigated by first-principles calculations. It is found that the atomic S has stronger interaction with the Pt atom, while the SH and H2S species are weakly bound on the Pt-graphene surfaces. The adsorption of S-based species can regulate the electronic structure and magnetic properties of Pt-graphene systems. Besides, the calculated results show that the formation of SH and H from the H2S (H2S → SH + H) is rather easy and further the hydrogenation reaction generates the hydrogen molecular (H2), as well as leaving the SH anchors on the Pt atom (SH + H + H → SH + H2). Moreover, the preadsorbed S atom with the presence of H atoms can be converted into other species (SH or H2S) and thus inhibit the sulfur deposition on the Pt-graphene surfaces, which is expected to prevent the sulfur poisoning on graphene-based anode materials and boost the efficiency of fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.