Abstract

High-level correlated electronic structure calculation and dual-level variational transition state theory with multidimensional tunneling calculation for rate constants have been performed on four noble gas exchange reactions [(1) He + HNBHe'(+) → He' + HNBHe(+), (2) He + HNBNe(+) → Ne + HNBHe(+), (3) Ne + HNBNe'(+) → Ne' + HNBNe(+), and (4) Ar + HNBAr'(+) → Ar' + HNBAr(+)] and on three (3)He isotopic analogues (He + HNB(3)He(+), (3)He + HNBHe(+), and (3)He + HNB(3)He(+)) of the first reaction. The classical barrier heights were predicted to be 8.9, 6.8, 5.7, and 5.5 kcal/mol for the four reactions, respectively. The tunneling effects were found to be important below 250 K for the He reactions and below 150 K for the Ne and Ar reactions. Kinetic helium isotope effects as large as 7.8 at 100 K were predicted for the (3)He + HNB(3)He(+) reaction. Additionally, the structures and energies of the Kr + HNBKr'(+) and Xe + HNBXe'(+) systems have also been studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.