Abstract

The mechanism of the transition metal manganese complex Mn(PhPNN)(CO)2Br (CA-4) that catalyzed the hydrogenation of the azo (N═N) bond to amines has been investigated using the PBE0 function. The results show that the whole reaction involves three basic processes: (1) the addition of H2 to CA gives IN2, which can hydrogenate the azo (N═N) bond at the later stage; (2) hydrogenation of azobenzene by IN2, which gives 1,2-diphenylhydrazine (PhNHNHPh); and (3) hydrogenation of 1,2-diphenylhydrazine by IN2, which affords aniline (PhNH2). The results suggest that the hydrogenation of CA and hydrogenation of azobenzene by IN2 to afford PhNHNHPh are easy to occur due to the low barriers, and the overall rate-determining step is the formation of IN11 and PhNH2 by breaking the N-N bond in the stage of hydrogenation of 1,2-diphenylhydrazine by IN2, with an energy barrier of 39.1 kcal/mol. The computed results are in good agreement with the experimental results. The mechanism of the azobenzene reaction catalyzed by manganese was analyzed by charge and orbital analysis in detail. The theoretical results provide a deeper understanding of the mechanism and fully explain the experimental facts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.