Abstract

AbstractThe thermal rearrangement mechanisms of 2‐silylethylacetate H3SiCH2CH2OOCCH3 were investigated by ab initio molecular orbital theory for the first time. All structures of reactant, transition states, and products were located and fully optimized at the B3LYP/6‐311+G(d, p) levels, and harmonic vibrational frequencies for the involved stationary points on the potential energy surface were obtained. The reaction pathways were analyzed and confirmed by intrinsic reaction coordinate (IRC) calculations. Furthermore, atomic charges were determined by using the natural bond orbital (NBO) analysis. The calculational results show that H3SiCH2CH2OOCCH3 can rearrange thermally in two ways. One is [1,3] rearrangement (Reaction A), in which silyl group transfers from carbon to oxygen(in COC) via a four‐membered ring transition state, forming silyl acetate and ethylene, the other way, [1,5] rearrangement (Reaction B), happens with transferring of silyl group from carbon to oxygen (in CO) via a six‐membered ring transition state, forming the same products as in Reaction A. The energy barriers of the Reactions A and B were calculated to be 188.9 and 191.6 kJ/mol at the B3LYP/6‐311+G(d,p) levels, respectively. Changes in thermodynamic functions (ΔS, ΔH, and ΔG), equilibrium constant K(T), as well as preexponential factor A(T), and reaction rate constant k(T) in Eyring transition state theory were calculated over a temperature range of 200–1600 K, and then thermodynamic and kinetic properties of the reactions were analyzed. It can be suggested that Reactions A and B are noncompetitive, and both happen only at elevated temperature. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.