Abstract

AbstractThe density functional method was applied to the study of 1,1‐diamino‐2,2‐dinitroethylene (Fox‐7)/H2O dimer. All the possible dimers (1, 2 and 3), as well as the monomers, were fully optimized with the DFT method at the B3LYP/6‐311++G** level. The basis set superposition errors (BSSE) are 4.62, 4.07 and 3.45 kJ/mol, and the zero point energy (ZPE) corrections for the interaction energies are 7.94, 5.66 and 6.40 kJ/mol for 1, 2 and 3, respectively. Dimer 1 is the most stable, judged by binding energy. After BSSE and ZPE corrections, the greatest corrected intermolecular interaction energy of dimer 1 was predicted to be −29.36 kJ/mol. The charge redistribution mainly occurs on the adjacent N–H··· O atoms and N–O··· H atoms between submolecules. The oxygen in the nitro group acts as a moderate hydrogen acceptor as compared to water oxygen. Based on the statistical thermodynamic method, the standard thermodynamic functions, heat capacities (C0P), entropies (S0T) and thermal corrections to enthalpy (H0T), and the changes of thermodynamic properties on going from monomer to dimer over the temperature range 200.00‐700.00 K were predicted. It is energetically or thermodynamically favorable for Fox‐7 to bind with H2O and to form dimer 1 at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.