Abstract

DFT/TDDFT calculations were carried out to investigate the electronic structures, absorption and phosphorescence properties of a series of heteroleptic Ir(III) complexes consisting of two N-heterocyclic carbene ligands and a conjugated bicyclic N,N′-heteroaromatic (NˆN) ligand. On the basis of the results reported herein, we attempt to explain the experimental observations according to which complex (mpmi)2Ir(pybi) (1) [Hmpmi = 1-(4-tolyl)-3-methyl-imidazole; Hpybi = 2-(pyridin-2-yl)-1H-benzo[d]imidazole] emits green light with an extremely high-quantum phosphorescence efficiency (Φ PL ) of 79.3%, while a relatively lower Φ PL (only 11%) was measured for (fpmi)2Ir(tfpypz) (2) [fpmi = 1-(4-fluorophenyl)-3-methylimdazolin-2-ylidene-C, C2′; tfpypz = 2-(3-(trifluoromethyl)-1H-pyrazol-5-yl)pyridinato] emitting blue light by tuning the NˆN ligands. Besides, we also designed (fpmi)2Ir(pyN3) (3) [pyN3H = 2-(5-(trifluoromethyl)-2H-1,2,4-triazol-3-yl)pyridine] and (fpmi)2Ir(pyN4) (4) [pyN4H = 2-(1H-tetrazol-5-yl)pyridine] to explore the influence of electron-withdrawing substituents on NˆN ligands on the electronic and optical properties of these Ir(III) complexes. The results revealed that electron-withdrawing substituents can stabilise both HOMOs and LUMOs and induce HOMO–LUMO energy gap change. Moreover, the emission properties can be significantly tuned by introducing different NˆN ligands. While new insights were gained on structural and electronic properties, the extremely high Φ PL of 1 was found to be not inherent to spin-orbital coupling effects, but determined by its large transition dipole moment (μS 1) upon S 0–S 1 transition compared with that of 2. On the basis of these results, the designed complexes 3 and 4 are considered to be the promising candidates for blue-emitting phosphorescence materials with higher Φ PL than the complex 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call