Abstract

The hydrogen-bonding ability of five-membered heteroaromatic molecules containing one chalcogen and two heteroatoms with nitrogen in addition to chalcogen, respectively, have been analyzed using density functional and molecular orbital methods through adduct formation with water. The stabilization energies for all the adducts are established at B3LYP/6-31+G* and MP2/6-31+G* levels after correcting for the basis set superposition error by using the counterpoise method and also corrected for zero-point vibrational energies. A natural bond orbital analysis at B3LYP/6-31+G* level and natural energy decomposition analysis at HF/6-31+G* using MP2/6-31+G* geometries have been carried out to understand the nature of hydrogen-bonding interaction in monohydrated heterocyclic adducts. Nucleus-independent chemical shift have been evaluated to understand the correlation between hydrogen bond formation and aromaticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call