Abstract

The ground and excited states of Ni(CO)4 are studied using the symmetry adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) method. The experimental absorption spectrum is well reproduced by the present calculations. All the peaks observed in the range of 200∼350 nm are assigned to the electronic allowed 1T2 excited states. The third peak is assigned to the 3 1T2 and 4 1T2 states. Next, the potential energy curves of the ground and the low-lying excited states are calculated by the same method and utilized to clarify the mechanism of the photofragmentation reaction of Ni(CO)4 by a XeCl laser (308 nm). A reaction pathway involving several excited states is proposed for the photofragmentation reaction into the excited Ni(CO)3 and CO. The calculated emission energy from the former agrees well with the observed luminescence spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.