Abstract

To develop highly efficient NLO materials for optoelectronic applications, theoretically, superhalogen-doped sulflower and selenosulflower were studied. The DFT/B3LYP-D3/6–311++G(2d,2p) basis set is used to complete the inquiry. The NLO properties of these complexes were assessed using, vertical ionization energy, and Electron Density Difference Map (EDDM) methods. The EDDM results reveal the electron transfer from sulflower to superhalogens leads to a donor–acceptor mechanism, which enhances hyperpolarizability. Superhalogen-doped sulflowers exhibit more prominent NLO properties than the undoped ligands, including static and dynamic NLO characteristics. This enhancement is due to the distortion of centrosymmetry and charge transfer between the sulflower and the doped superhalogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.