Abstract

The geometry structures, electronic structures, absorption and phosphorescent properties of four Ir(III) complexes {[(F2-ppy)2Ir(pta-X)], where F2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = –CF3; –H; –CH3; –N(CH3)2}, are investigated using the density functional method. The results reveal that the electron-accepting group –CF3 has no obvious effect on absorption and emission properties, while the substitutive group –N(CH3)2 with strong electron-donating ability has obvious effect on the emission properties. The mobility of hole and electron were studied computationally based on the Marcus–Hush theory. Calculations of ionisation potential and electron affinity were used to evaluate the injection abilities of holes and electrons into these complexes. We hope that this theoretical work can provide a suitable guide to the future design and synthesis of novel phosphorescent materials for use in the organic light-emitting diodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.