Abstract
Abstract The electronic configurations and the nature of chemical bonds of the classical lantern-type dinuclear rhodium(II) tetraacetato complexes [Rh2(CH3COO)4(L)2] (L = H2O, free) have been carefully investigated with broken symmetry (BS) Hartree–Fock (HF), BS density functional theory (DFT), and BS hybrid DFT (HDFT) methods. Several electronic configurations have been proposed for the ground states of the [Rh2(RCOO)4(H2O)2] complexes. In this study, we concluded that those different electronic configurations originate from the position of the axial H2Os, and not along the Rh–Rh length. The BS(U)B3LYP calculation indicates that the stability of the σ and δ orbitals changed when the Rh–OH2 length was 2.35 Å. The natural orbital (NO) analyses and chemical indices clearly indicate that there is a σ-type single bond between the Rh ions, and that the axial H2Os does not affect the overlap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.