Abstract

In recent years, two-dimensional (2D) electronic spectroscopy experiments prove that the excitation energy transfer (EET) in photosynthetic light-harvesting systems presents long-lived electronic quantum beating signals. After being discovered in the light-harvesting system, the quantum coherence effect has aroused widespread discussion. To illustrate the EET process in the Fenna-Matthews-Olson (FMO) and phycocyanin 645 (PC645) complex, the local protein environment is often thought to be the same; however, this is ambivalent to the practical structural analysis of the light-harvesting complex. By adopting the dissipaton equation of motion theory, we present the effect of a heterogeneous protein environment on the energy transfer process with accurate numerical results. We demonstrate that the energy transfer process relies on the local heterogeneous environment for the FMO complex. A similar good agreement is found for the PC645 complex. Furthermore, we discuss the optimal value of different chromophores in the excitation energy transfer process by controlling the environmental characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call