Abstract

We used stochastic one-dimensional chemical master equation (CME) simulation to gain insight into the dynamics of the reaction of HNO((1)A') with HO2((2)A″). The reaction takes place over a multiwell, multichannel potential energy surface that is based on the computations at the CBS-QB3 level of theory. The calculated multipath potential energy surface consists of three potential wells and three van der Waals complexes. In solving the master equation, the Lennard-Jones potential is used to model the collision between the collider gases. The fractional population of different intermediates and products in the early stages of the reaction is examined to determine the role of the energized intermediates and van der Waals complexes on the kinetics of the title reaction. The major products of the title reaction at lower temperatures are OH, HNO2, HNOH, and O2(X(3)Σg(-)). The temperature- and pressure-dependence of the reaction over a wide range of temperature (300-3000 K) and pressure (0.1-2000 Torr) are studied. No sign of pressure dependence was being observed for the title reaction over the stated range of pressure. The calculated rate constants from the CME simulation are compared with those obtained from the RRKM-SSA method that is based on strong collision assumption. Our results indicate that the strong collision assumption increases the calculated rate constant for the formation of the main products (HNO2 + OH) by a factor of 2 at 300 K and 1 atm pressure, compared to the results of CME simulation, although the results are in good agreement at higher temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call