Abstract

To deeply understand the charge-transporting nature of Pt(CN(t)Bu)(2)(CN)(2) nanowires induced by intermolecular Pt···Pt interactions, calculations based on first-principle band structure and Marcus theory have been performed. The calculated bandwidths of the valence band, conducting band, and the effective masses of hole and electron are almost equal. This suggests that this complex has ambipolar transport characteristics, in agreement with experimental results. Density of states analysis revealed that the hole transport resulted mainly from the Pt···Pt interactions, while the electron transport was derived mainly from the CN groups. The character of the frontier molecular orbitals, reorganization energies and transfer integrals in different directions also supports the calculated first-principle band structure. Moreover, an investigation into the intermolecular interaction energy of neighbors revealed that there is a remarkable relationship between the intermolecular interaction energy and the transfer integral.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call