Abstract
A combined molecular dynamics (MD) and quantum chemical (QC) simulation method is utilized to investigate charge generation mechanism at TTF/TCNQ (tetrathiafulvalene/tetracyanoquinodimethane) heterojunction, which is a controversial donor/acceptor (D/A) interface for organic photovoltaic (OPV) devices. The TTF/TCNQ complexes extracted from MD simulation are classified into parallel and herringbone packings. And then, the amounts of charge transferred from ground states to different excited states and the corresponding energies of charge transfer (CT) state are compared and analyzed using QC simulation. Moreover, the electron transfer/recombination rates for these interfacial configurations are also studied. From these data, we have elucidated the underlying reason why TTF/TCNQ heterojunction is inadaptable to OPV application. One main reason is that large |ΔGCT| (the absolute value of Gibbs free energy change of CT) forms a large energy barrier, limiting exciton dissociation at the TTF/TCNQ heterojunction, and small |ΔGCR| (the absolute value of Gibbs free energy change of charge recombination) performs the easy recombination to the ground state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.