Abstract

Antibiotics play a key role in the fight against bacterial diseases. However, bacteria quickly learn how to minimize the effects of antibiotics and strengthen their resistance. Thus, the fight against them becomes more and more difficult and there is a constant search for new bactericidal compounds. It is important in this type of search to determine the basic properties of compounds such as pKa, hydrogen bond formation, or hydrophobicity. Here, we present the results of our in silico study of five sulfonamide derivatives differing in alkylamine substituent length. Based on our results, we propose a model of three possible pKa values for each of the studied compounds. Interestingly, the use of Muckerman's approach for pKa determination exhibits that theoretical and experimental results are in very good agreement. Intramolecular hydrogen bond formation affects pKa. The strength of the H-bond interaction increases from ethyl to butylamine and then decreases with the elongation of the alkylamine chain. The obtained partition coefficients (expressed here in the value of log P) increase with the number of carbon atoms in the alkylamine chain following Lipinski's rule of five. The presented results provide important structural, physicochemical, and thermodynamic information that allows for the understanding of the influence of some sulfonamides and their possible activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.