Abstract

A base-catalyzed hydrolysis reaction of thiolester has been studied in both gas and solution phases using two ab initio quantum mechanics calculations such as Gaussian09 and CPMD. The free-energy surface along the reaction path is also constructed using a configuration sampling technique, namely, the metadynamics method. While there are two different reaction paths obtained for the potential profile of the base-catalyzed hydrolysis reaction for thiolester in the gas phase, a triple-well reaction path is computed for the reaction in the solution phase by two quantum mechanics calculations. Unlike the S(N)2 mechanism (a concerted mechanism) found for the gas-phase reaction, a nucleophilic attack from the hydroxide ion on the carbonyl carbon to yield a tetrahedral intermediate (a stepwise mechanism) is observed for the solution-phase reaction. Moreover, the energy profiles computed by these two theoretical calculations are found to be very comparable with those determined experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.