Abstract

Parallel or polar strands of beta-peptides spontaneously form nanotubes of different sizes in a vacuum as determined by ab initio calculations. Stability and conformational features of [CH3CO-(beta-Ala)k-NHCH3]l (1 < or = k < or = 4, 2 < or = l < or = 4) models were computed at different levels of theory (e.g., B3LYP/6-311++G(d,p)// B3LYP/6-31G(d), with consideration of BSSE). For the first time, calculations demonstrate that sheets of beta-peptides display nanotubular characteristics rather than two-dimensional extended beta-layers, as is the case of alpha-peptides. Of the configurations studied, k = l = 4 gave the most stable nanotubular structure, but larger assemblies are expected to produce even more stable nanotubes. As with other nanosystems such as cyclodextrane, these nanotubes can also incorporate small molecules, creating a diverse range of applications for these flexible, biocompatible, and highly stable molecules. The various side chains of beta-peptides can make these nanosystems rather versatile. Energetic and structural features of these tubular model systems are detailed in this paper. It is hoped that the results presented in this paper will stimulate experimental research in the field of nanostructure technology involving beta-peptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call