Abstract

The binding energy of Cu2+(H2O) is computed to be 98.4 kcal/mol and thus one-photon photodissociation is not possible in the 3400–3800 cm–1 (9.7–10.9 kcal/mol) region. To study whether the infrared photodissociation processes of Cu2+(H2O) can occur by multiple argon atoms tagging technique, density functional and CCSD(T) methods are used to investigate the geometries, OH stretching frequencies and the argon atom binding energies of Cu2+(H2O)Ar n (n = 1–4) complexes. Various isomers are found resulting from the different coordination sites of argon atoms. The OH stretches in these complexes are shifted to lower frequencies than those of the free water molecule, and the corresponding vibrational red shifts are progressively smaller as more argon atom is added to Cu2+ while binding an argon atom to an OH site should lead to additional sizable red shift to the OH stretching vibrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.