Abstract

A series of self-constituted multiple hydrogen bonded (MHB) complexes has been investigated systematically by density functional theory (PBE1PBE /6-31G**), the Morokuma energy decomposition method (HF/6-31G**) and MP2 (6-31G** and 6-311++G**) calculation. We have discovered that (i) for doubly hydrogen bonded (DHB) complexes, both the interaction energy and stability increase with the charge transfer energy; (ii) for quadruple hydrogen bonded (QHB) complexes, cooperativity is the most important factor determining stability of the complex: stronger cooperative energy correlates well with larger interaction energy and thus more stable complex and vice versa; (iii) correlation energy plays an important role in intermolecular interactions. The correlation energy, mainly consisting of dispersive energy, also exhibits cooperativity in MHB dimers: positive for M-aadd and generally negative for other complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call