Abstract

We theoretically show that diaza (N2)-substitution to s-indacene with 4n π-electrons, by which the number of π-electrons in N2-s-indacene amounts to 4n+2, is a new strategy to design efficient singlet fission (SF) molecules. By N2-substitution, the diradical character and the exchange integral are found to be tuned moderately, leading to satisfying the excitation energy level matching condition for SF with a large triplet excitation energy. On the basis of the effective electronic coupling related to the SF rate, we explore the optimal slip-stack dimer packings for fast SF. Their underlying mechanisms are well understood from the odd-electron density, resonance structure, and frontier orbital distribution, as the functions of the N2-substituted positions. Furthermore, aromaticities of N2-s-indacenes are evaluated explicitly on the basis of the magnetically induced current. Although N2-s-indacenes display strengths of aromaticities similar to that of anthracene, a local decrease in aromaticity is found to correlate to the spatial feature of diradical character, i.e., odd-electron density. The present findings not only newly propose N2-s-indacenes as feasible SF molecules but also contribute to comprehending the interplay between aromaticity and diradical electronic structures contributing to SF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.