Abstract

Using density functional theory, we studied denitrification reaction mechanisms of copper adducts of tris(pyrazolyl)methane and hydrotris(pyrazolyl)borate models of a copper nitrite reductase (Cu-NiR), and herein propose several possible reaction pathways, including some parts that have never been examined previously. Because electron and proton transfer reactions participate in the enzymatic cycles of Cu-NiR, the Gibbs energy of a proton in solution, G(H(+)), and the redox potential, Eredox, of the model Cu-NiR are also evaluated. Although the pathway where a nitrite is provided as HNO2 is energetically preferable, a well-known reaction pathway passing through the resting state with an active site occupied by a water molecule where nitrite is provided as NO2(-) is the main recognized pathway under normal conditions. These features do not change whether the electron transfer occurs before production of NO or not. However, our results suggest that the pathway involving HNO2 might become dominant under low pH conditions in conjunction with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.