Abstract

In this paper, the radial distribution laws of damage factors under decoupled charge blasting are studied for the optimization design of blasting parameters. Through defining the critical radial decoupling coefficient, the damage zone around the borehole is partitioned and the characteristics are described. Based on the damage factor defined by Taylor’s effective elastic modulus, the formulas of the radial distribution laws of damage factors are derived by the attenuation law of stress wave and the theory of thick-walled cylinder, respectively, which are then superposed to obtain the formula under the combined action of explosion stress wave and quasistatic gas. Experimental verification indicates that the theoretical values, which have a good correlation with the test data and are of high accuracy, can characterize the radial distribution laws of damage factors and estimate the damage range. When a radial decoupling coefficient is less than the critical value, the attenuation rate of damage factors firstly increases and then decreases with the increase of distance, and a serious damage zone is caused. Conversely, it decreases gradually, and the serious damage zone is not caused. Therefore, on the premise of stable detonation, it is necessary to apply an appropriate radial decoupling coefficient which is larger than the critical value to smooth or presplit blasting.

Highlights

  • During the process of formation and evolution of rock mass, there are a lot of initial damages such as microcracks and microcavities in the interior [1, 2]

  • When the strain analysis is applied, only the volumetric strain is considered, and the equivalent strain is ignored. erefore, it is necessary to conduct a theoretical analysis on the radial distribution laws of damage factors under the combined action of explosion stress wave and quasistatic gas, which can provide a theoretical guidance for optimizing blasting parameters and carrying out model experiments and numerical experiments

  • Based on the effective elastic modulus of mesodamage mechanics, the radial distribution laws of damage factors under the combined action of explosion stress wave and quasistatic gas are derived by the attenuation law of explosion stress wave and the change law of elastic stress field in the thick-walled cylinder. e correctness and reliability is validated by experimental data so as to lay a theoretical foundation for the optimization design of blasting parameters

Read more

Summary

Introduction

During the process of formation and evolution of rock mass, there are a lot of initial damages such as microcracks and microcavities in the interior [1, 2]. Erefore, it is necessary to conduct a theoretical analysis on the radial distribution laws of damage factors under the combined action of explosion stress wave and quasistatic gas, which can provide a theoretical guidance for optimizing blasting parameters and carrying out model experiments and numerical experiments. Based on the effective elastic modulus of mesodamage mechanics, the radial distribution laws of damage factors under the combined action of explosion stress wave and quasistatic gas are derived by the attenuation law of explosion stress wave and the change law of elastic stress field in the thick-walled cylinder. Based on the effective elastic modulus of mesodamage mechanics, the radial distribution laws of damage factors under the combined action of explosion stress wave and quasistatic gas are derived by the attenuation law of explosion stress wave and the change law of elastic stress field in the thick-walled cylinder. e correctness and reliability is validated by experimental data so as to lay a theoretical foundation for the optimization design of blasting parameters

Definition of Damage Factor and Partition of Damage Zone
Distribution Laws of Damage Factors
Experimental Verification and Analysis
Figure 3
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call