Abstract

Two novel matrix metalloproteinase (MMP) inhibitors, myricetin (m) and kaempferol (k), were found and the inhibitory activity is both in decreased order towards MMP-2 and MMP-9. To understand the mechanism during the processes when inhibitors bind to MMP-2 and MMP-9, molecular modeling, docking, and density functional theory (DFT) calculations were performed. The calculated results indicated that the hydroxyls on benzene ring of the inhibitors control the binding modes between inhibitors and MMPs, thus play an important role on the potency and selectivity. Besides coordinating with the N atoms of three His residues, Zn also interacts with a hydroxyl group of inhibitors by O – Zn distances of 2.66–2.78 Å in all of the docked complexes, so that the hydroxyl acts as a weak zinc binding group (ZBG). The DFT calculated results support the above analysis. The binding affinity calculations between inhibitors and MMPs present the total interaction energies in the m-MMP < k-MMP order and the solvation energy of myricetin is less than that of kaempferol, which reflect the experimental inhibitory activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.