Abstract

DFT and TDDFT methods have been performed to investigate the photoisomerization effect for dithiazolylarylene on solution. The weak S···N interaction and CH···N hydrogen bond restrain the rotation of the side-chain thiazolyl ring in open-isomer 1a, the higher stability of which prefers to show a high quantum yield of photoisomerization. The calculated UV-Vis spectrum at around 320 nm for open-isomer 1a is bathochromically shifted to 647 nm for closed-isomer 1b, in excellent agreement with the experimental photochromic phenomenon. The electron transition in ECD (electron circular dichroism) spectra for closed-isomer 1b with two chiral carbon atoms is dominated by ICT (intramolecular charge transition) and LE (local excitation) corresponding to one positive (440 nm) and one negative Cotton effect (650 nm), respectively, where the two chiral carbon atoms play a slight role in these transitions. The PES in the S(1) and S(0) states, respectively, indicates that the cyclization reaction from open-isomer 1a to closed-isomer 1b is allowed in the photoexcited state with high-conversion quantum efficiency, while it is forbidden in the thermodynamic process. In addition, the second-order nonlinear optical response for closed-isomer 1b is nearly six times larger than that for open-isomer 1a. It is also confirmed that the photoirradiation evokes the photoisomerization character to show dramatic difference in the second-order NLO response, which can be applied to designing photochromic materials and reversible NLO switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.