Abstract

The conversion of gaseous N2 to ammonia under mild conditions by artificial methods has become one of the hot topics and challenges in the field of energy research today. Accordingly, based on density function theory calculations, we comprehensively explored the d-block of metal atoms (Ti, V, Cr, Mn, Fe, Co, Ni, Nb, Mo, Ru, Rh, W, and Pt) embedded in arsenene (Ars) for different transition systems of phosphorus (P) coordination as potential electrocatalysts for N2 reduction reaction (NRR). By adopting a “two-step” strategy with stringent NRR catalyst screening criteria, we eventually selected Nb@P3-Ars as a research object for a further in-depth NRR mechanism study. Our results show that Nb@P3-Ars not only maintains the thermodynamic stability at mild temperatures but also dominates the competition with the hydrogen evolution reaction when used as the electrochemical NRR (e-NRR) catalyst. In particular, while the NRR process occurs by the distal mechanism, Nb@P3-Ars has a low overpotential (0.36 V), which facilitates the efficient reduction of N2. Therefore, this work predicts the possibility of Nb@P3-Ars as an e-NRR catalyst for reducing N2 from a theoretical perspective and provides significant insights and theoretical guidance for future experimental research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.