Abstract

Micro-abrasive jet machining (AJM) is an advanced subtractive machining technology with ample opportunities to form regular micro-patterns on freeform surfaces. AJM removes material mainly through erosion and abrasion, which transform kinetic energy to fracture and deform substrates. The kinetic energy of a solid particle is tightly connected to its velocity, which is the most significant source of error in precise prediction of a machined feature. The present study involves both theoretical analysis and two-dimensional axisymmetric numerical simulation of particle velocity fields at the lower end of the micro-scale. The developed model represents the finest particles in a cylindrical nozzle down to an inner diameter of 100 μm. The computed results agree well with the experimental data. It is shown that, due to viscous friction, such nozzles are significantly less efficient in terms of particle saturation with kinetic energy. The study highlights the effects of nozzle diameter and length, air pressure, particle size and density on particle velocity development through the jet field. Finally, practical recommendations and multiple regression models of maximum particle velocity, location from the nozzle exit and simplex velocity profile approximation are offered for management of particle kinetic energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call