Abstract

Designing efficient ORR/OER bifunctional electrocatalysts is very significant for reducing energy consumption and environmental protection. Hence, we studied the ORR/OER bifunctional catalytic activity of iron polyphthalocyanine (FePPc) coordinated by a series of axial ligands which has different electronegative coordination atom (FePPc-L) (L = -CN, -SH, -SCH3, -SC2H5, -I, -Br, -NH2, -Cl, -OCH3, -OH, and -F) in alkaline medium by DFT calculations. Among all FePPc-L, FePPc-CN, FePPc-SH, FePPc-SCH3, and FePPc-SC2H5 exhibit excellent ORR/OER bifunctional catalytic activities. Their ORR/OER overpotential is 0.256 V/0.234 V, 0.278 V/0.256 V, 0.280 V/0.329 V, and 0.290 V/0.316 V, respectively, which are much lower than that of the FePPc (0.483 V/0.834 V). The analysis of the electronic structure of the above catalysts shows that the electronegativity of the coordination atoms in the axial ligand is small, resulting in less distribution of dz2, dyz, and dxz orbitals near Ef, weak orbital polarization, small charge and magnetic moment of the central Fe atom, and weak adsorption strength for *OH. All these prove that the introduction of axial ligands with appropriate electronegativity coordinating atoms can adjust the adsorption of catalyst to intermediates and modify the ORR/OER bifunctional catalytic activities. This is an effective strategy for designing efficient ORR/OER bifunctional electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.