Abstract

Acenaphthene is widespread and toxic, and thus of substantial environmental concern. The reaction with NO3 radicals is an important atmospheric loss process of acenaphthene at night time. In this work, the mechanism for the NO3-initiated atmospheric oxidation reaction of acenaphthene has been studied using high level molecular orbital theory. Geometries of all the related species have been optimized at the MPWB1K level with the 6–31G(d,p) basis set. The single-point energy calculations have been carried out at the MPWB1K/6–311+G(3df,2p) level. The possible secondary reactions were also studied. Several energetically favorable reaction pathways were revealed for the first time.Key words: acenaphthene, NO3 radicals, reaction mechanism, product information, oxidation degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.