Abstract

Abstract The mechanical and electronic transport properties of 4-(methylthio)benzoic acid (M1), 1,4-bis(methylthio) benzene (M2) and methyl 4-(methylthio)benzoate (M3) molecular junctions are studied employing density functional theory and elastic scattering Green's function method. The numerical results show that the rupture force of M1 and M2 junctions are both about 0.6 ± 0.1 nN as experiment probed, which is much smaller than the force to break COO−–Au bond. The COO− group strongly influenced on M1 molecular junction and further strengthened SMe–Au bond at the other end of the junction. The M3 junction is less stable because the CH3 group linked to COO group destroyed the mechanical stability of COO–Au connection. The conductance of M2 junction is about an order larger than that of M1 junction as the experiment probed. The less stable feature of M3 junction leads the absence of conductive peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.