Abstract
Low-lying states of Ga2P and Ga2As are investigated with the equation-of-motion coupled-cluster approach for ionized states at the singles and doubles level (EOMIP-CCSD) as well as at the CCSDT-3 level together with CCSD, CCSD(T), and DFT. Except for the asymmetric stretching b2 mode of the (2)B2 and (2)A1 states, all these approaches provide structures, frequencies and adiabatic electron affinities that are in reasonable agreement with each other. According to our results, the lowest-energy state of these two molecules is the (2)A' state of C(s) symmetry and the (2)B2 state is the ground electronic state with C(2v) symmetry. As for the b2 mode, CCSD and CCSD(T) afford real frequencies for the (2)B2 state, while EOM approaches and DFT with most exchange-correlation functionals give rise to imaginary frequencies. The (2)B2 and (2)A1 states couple with each other due to distortion along b2 mode through the pseudo-Jahn-Teller effect. Analysis on results shows that EOM approaches afford reasonable b2 frequencies for the two states and DFT approaches, except for BP86 and PBE, provide qualitatively correct b2 frequencies for the (2)B2 state. In addition, a potential matrix is introduced to describe the vibronic coupling between the (2)B2 and (2)A1 states and parameters in the matrix are fitted to the adiabatic potential curves from EOMIP-CCSD results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.