Abstract

In this work, the hydrogen storage capacity of the expanded hexagonal Boron Nitride (eh-BN) systems has been presented. We have employed a new equation of state (EOS) for hydrogen gas to figure out the hydrogen density distribution profiles in the eh-BN systems. In this regard, the environmental conditions (i.e., temperature and pressure) are considered in the prediction procedure using DFT single point calculations. The eh-BN systems with different layer spacings are studied by PBE method with consideration of the long range dispersion corrections. On account of the in-plane polar bonds, a series of adsorption positions are considered. Additionally, the adsorption energy and hydrogen density profiles are reported. Furthermore, the relation between uptakes and the interlayer spacings with the effects of the environmental conditions are also provided. The limit of the physical hydrogen storage capacity in a perfect eh-BN system at 243K and 10MPa is founded to be 2.96wt.%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call