Abstract
The HBO(+) and HOB(+) cations have been reinvestigated using the CASSCF and CASPT2 methods in conjunction with the contracted atomic natural orbital (ANO) basis sets. The geometries of all stationary points in the potential energy surfaces were optimized at the CASSCF/ANO and CASPT2/ANO levels. The ground and the first excited states of HBO(+) are predicted to be X(2)Pi and A(2)Sigma(+) states, respectively. It was predicted that the ground state of HOB(+) is X(2)Sigma(+) state. The A(2)Pi state of HOB(+) has unique imaginary frequency. A bending local minimum M1 was found for the first time along the 1(2)A'' potential energy surface and the A(2)Pi state of HOB(+) should be the transition state of the isomerization reactions for M1<--> M1. The CASPT2/ANO potential energy curves (PECs) of isomerization reactions were calculated as functions of the HBO bond angle. Many of the CASSCF and CASPT2 calculated results were different from the previously published QCISD(T) results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.