Abstract

We study Gilbert damping in bulk metallic ferromagnets containing magnetic and nonmagnetic impurities in the presence of nonuniform magnetization precession. In this model, a microscopic expression for the Gilbert damping tensor is obtained using the linear response theory with respect to the interaction between magnetization and conduction electrons. We especially focus on a diagonal element of the tensor, which is a conventional Gilbert damping constant, and evaluate it numerically as a function of the wave vector q of magnetization precession. We show that the impurity scattering dominates Gilbert damping for 0<| q |< k F↑ - k F↓ , while the Stoner excitation dominates for k F↑ - k F↓ <| q |< k F↑ + k F↓ ( k Fσ is the Fermi wave number for σ spin electrons).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.