Abstract

Fiber lasers show several advantages over other types of lasers. They are efficient, compact, and rugged since they require few bulk components and are virtually unaffected by the surrounding environment. Mode-locked mid-infrared (mid-IR) lasers are essential for a wide variety of applications. The promising applications of mode-locked fiber lasers at wavelengths near 3 m include combs generation (metrology), spectroscopic sensors, infrared countermeasures, laser surgery, high-efficient pump sources for longer-wavelength oscillators and mid-IR supercontinuum source pumping. Based on the nonlinear Schrdinger equation (NLSE), a theoretical model of passively mode-locked Er3+-doped fluoride fiber laser using a saturable absorber is set up. Some mechanisms for generating mid-IR ultrashort pulse in fiber lasers are investigated. When the dispersion of the cavity is managed properly, the numerical simulation mainly focuses on the evolution process of mid-IR ultrashort pulse in fluoride fiber oscillators. Influences of the intracavity net dispersion and the small-signal gain on the generation of mode-locked pulses are analyzed in detail. And the reasonable parameter windows are given. Just as the simulated results showed, for a case of 4 m Er3+-doped fluoride fiber, small-signal gain g0= 0.6 m-1 and unsaturated loss l0 = 0.7, the stable mode-locked pulses are achieved by tuning the net intracavity dispersion within a certain range from 0.72 ps2 to 0.83 ps2. As the net intracavity dispersion increases, the output pulse duration increases gradually, while the spectrum width (FWHM) and peak power decrease accordingly. In addition, for the case of 4 m Er3+-doped fluoride fiber, unsaturated loss l0 = 0.7 and net intracavity dispersion of 0.8 ps2, the stable mode-locked pulses can also be obtained by tuning the small-signal gain within a certain range from 0.55 to 0.70 m-1. As the small-signal gain increases, the output pulse duration, spectral width, and peak power increase gradually. This work may be beneficial to the design of experiments for achieving more narrow pulse duration, wide spectral width, and high peak power mid-infrared ultrashort pulse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call