Abstract
Compared with normal concrete, high-strength concrete has higher strength but is generally more brittle. Its use in a reinforced concrete structure, if not properly controlled, could lead to an unsustainable reduction in ductility. However, confinement could be provided to improve the ductility of the structure. In this study, the effects of concrete strength and confinement on the flexural ductility of reinforced concrete beams have been evaluated by means of complete moment–curvature analysis of beam sections cast in different concretes and provided with different confinements. The results reveal that the use of high-strength concrete at a constant tension steel ratio would increase the flexural ductility, but at a constant tension to balanced steel ratio would decrease the flexural ductility. In contrast, the provision of confinement would always increase the flexural ductility. It does this in two ways: first, it increases the balanced steel ratio so that, at the same tension steel ratio, the tension to balanced steel ratio is decreased; and second, it increases the residual strength and ductility of the concrete so that, at the same tension to balanced steel ratio, the flexural ductility of the beam section is increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.