Abstract

A mathematical model was established successfully to analyze the gas separation concentration polarization which becomes an important problem due to the rapid development of membranes, especially the increase of permeation rate. The influences of membrane performance and operation parameters on concentration polarization were studied in terms of permeation fluxes of the more and the less permeable gases and separation factor. Sample calculations were presented for the two typical gas separation applications, hydrogen recovery and air separation, with shell side feed in hollow fiber module. The permeation rate was found to be a dominating factor in affecting concentration polarization, while the influences of separation factor to be significant initially and to level off gradually. Increasing feed gas velocity leads to a decrease in the concentration polarization. Operation pressures' effect is limited and the composition of feed gas shows no effect. The range in which concentration polarization is significant has been identified by studying the combined effects of the permeation rate, separation factor and feed gas velocity. Concentration polarization is important for process analysis and design when the permeation rate of the more permeable gas is larger than 1×10 −4 cm 3 (STP) cm −2 s −1 cmHg −1 (100 GPU).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call