Abstract

In order to deepen the understanding of the cation–anion interaction in ionic liquids, the structures of cation, anions, and cation–anion ion-pairs of 1-allyl-3-methylimidazolium-based ionic liquids are optimized using density functional theory (DFT), and their most stable geometries are discussed. The structural parameters, hydrogen bonds and interaction energies of 1-allyl-3-methylimidazolium dicyanamide ([Amim]DCA), 1-allyl-3-methylimidazolium chloride ([Amim]Cl), 1-allyl-3-methylimidazolium formate ([Amim]FmO) and 1-allyl-3-methylimidazolium acetate ([Amim]AcO) ion pairs are studied. The vibrational frequencies of [Amim]DCA and [Amim]Cl have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.