Abstract

Both theory and experiment show that sp2 carbon nanomaterials doped with N have great potential as high-efficiency catalysts for oxygen reduction reactions (ORR). At present, there are theoretical studies that believe that C-sites with positive charge or high-spin density values have higher adsorption capacity, but there are always some counter examples, such as the N-doped graphene nanoribbons with edge defects (ND-GNR) of this paper. In this study, the ORR mechanism of ND-GNR was studied by density functional theory (DFT) calculation, and then the carbon ring resonance energy was analyzed from the perspective of chemical graph theory to elucidate the cause and distribution of active sites in ND-GNR. Finally, it was found that the overpotential of the model can be adjusted by changing the width of the model or dopant atoms while still ensuring proper adsorption energy (between 0.5 and 2.0 eV). The minimum overpotential for these models is approximately 0.36 V. These findings could serve as guidelines for the construction of efficient ORR carbon nanomaterial catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.