Abstract

Two novel thermally activated delayed fluorescence (TADF) materials (PTZ-XTN and 2PTZ-XTN), with phenothiazine (PTZ) as an electron donor and xanthenone derivatives (XTN) as electron acceptors, were designed and theoretically investigated as blue OLED emitters. We used density functional theory (DFT) and time dependent DFT (TD-DFT) calculations to determine the electron distribution of HOMO and LUMO and the energy of the lowest singlet (S1) and the lowest triplet (T1) excited states. The large dihedral angle between the electron donor and the electron acceptor imparted a small spatial overlap between HOMO and LUMO in all the materials. This charge separation of the HOMO and LUMO leads to a small energy gap between the S1 state and T1 state, thereby leading to TADF emission. Among the materials studied, PTZ-XTN has the most suitable properties for a blue TADF OLED emitter, even though 2PTZ-XTN has the smallest energy gap between the S1 and T1 states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.