Abstract

The valence photoelectron spectra of Re(CO)(5)X (X=Cl, Br, and I) are studied theoretically using symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theory. The relativistic effects are included by the third-order Douglas-Kroll (DK3) method, and the spin-orbit coupling is also considered. Both electron correlation and relativistic effects are significant in assigning the valence photoelectron spectra of Re(CO)(5)X (X=Cl, Br, and I). DK3-SAC/SAC-CI provides values for the relative peak positions in a reasonable agreement with the observed photoelectron spectra. The sequence of ionization energies for Re(CO)(5)Cl, Re(CO)(5)Br, and Re(CO)(5)I are calculated as e(')[a(1)(Cl)]>e(')[e(Re+Cl)] approximately e(")[e(Re+Cl)]>e(")[b(2)(Re)]>e(')[e(Re-Cl)]>e(")[e(Re-Cl)], e(')[a(1)(Br)]>e(')[e(Re+Br)]>e(")[e(Re+Br)+b(2)(Re)]>e(")[b(2)(Re)+e(Re+Br)]>e(')[e(Re-Br)]>e(")[e(Re-Br)], and e(')[e(Re+I)+a(1)(I)]>e(")[b(2)(Re)+e(Re+I)] approximately e(')[a(1)(I)+e(Re+I)]>e(")[e(Re+I)+b(2)(Re)]>e(')[e(Re-I)]>e(")[e(Re-I)], respectively. These assignments are quite new and different from previous assignments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call