Abstract

The triatomic 4He system and its isotopic species \({^4{\rm He}_2^3{\rm He}}\) are theoretically investigated. By adopting the best empirical helium interaction potentials, we calculate the bound state energy levels as well as the rates for the three-body recombination processes: 4He + 4He + 4He → 4 He2 + 4He and 4He + 4He + 3He → 4He2 + 3He. We consider not only zero total angular momentum J = 0 states, but also J > 0 states. We also extend our study to mixed helium-alkali triatomic systems, that is 4He2X with X = 7Li, 23Na, 39K, 85 Rb, and 133Cs. The energy levels of all the J ≥ 0 bound states for these species are calculated as well as the rates for three-body recombination processes such as 4He + 4He + 7Li → 4 He2 + 7Li and 4He + 4He + 7Li → 4 He7Li + 4He. In our calculations, the adiabatic hyperspherical representation is employed but we also obtain preliminary results using the Gaussian expansion method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call