Abstract

The transmission through prototype aromatic molecule junctions formed between armchair (metallic) carbon nanotube electrodes is studied using a tight-binding model with a Green's function embedding approach. Analytical and numerical results for transmission near the Fermi energy are obtained for junctions of single molecules with a one-point contact to each electrode, pairs of such molecules in the junction, and double stranded molecules with a two-point contact to each electrode. While an ideal single stranded molecule (ideal polyene) with odd number of atoms gives unit transmission at the Fermi energy, two such strands in the junction demonstrate significant interference effects, with net transmission varying from near zero to near 2 depending on the specific contact sites at the electrodes. Ideal polyenes with even number of atoms give nonresonant single-molecule transmission at the Fermi energy and less pronounced interference effects from their double-molecule junctions. The bonded, two stranded junction (polyacene) also gives nonresonant transmission at the Fermi energy. Allowing for the more realistic bond alternation observed in aromatic molecules results in nonresonant transmission with exponential length dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call