Abstract

An atom-level ab initio understanding of the structural, energetic, and electronic properties of nanoclusters with diameter size from 1 to 2 nm figures as a prerequisite to foster their potential technological applications. However, because of several challenges such as the identification of ground-state structures by experimental and theoretical techniques, our understanding is still far from satisfactory, and further studies are required. We report a systematic ab initio investigation of the 55-atom metal nanoclusters, (M55), including alkaline, transitional, and post-transitional metals, that is, a total of 42 systems. Our calculations are based on all-electron density functional theory within the Perdew–Burke–Ernzerhof (PBE) functional combined with van der Waals (vdW) correction, spin–orbit coupling (SOC) for the valence states. Furthermore, we also investigated the role of the localization of the d states by using the PBE+U functional. We found a strong preference for the putative PBE global-minimum...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call