Abstract

The electronic spectrum of the azurin Met121Gln mutant, a model of the blue copper protein stellacyanin, has been studied by ab initio multiconfigurational second-order perturbation theory (the CASPT2 method), including the effect of the protein and solvent by point charges. The six lowest electronic transitions have been calculated and assigned with an error of less than 2400 cm-1. The ground-state singly occupied orbital is found to be a predominantly π antibonding orbital involving Cu3d and Scys3pπ. However, it also contains a significant amount (18%) of Cu−Scys σ antibonding character. This σ interaction is responsible for the appearance in the absorption spectrum of a band at 460 nm, with a significantly higher intensity than observed for other, axial, type 1 copper proteins (i.e., plastocyanin or azurin). The π−σ mixing is caused by the axial glutamine ligand binding at a much shorter distance to copper than the corresponding methionine ligand in the normal blue copper proteins. This explains why, b...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call