Abstract
The molecular mechanism of the graft reaction of 2,3-epoxypropyl-trimethyl quaternary ammonium chloride with chitosan monomer was investigated by performing density functional theory (DFT) calculations. The calculated results show that the −NH2 group of chitosan monomer is more reactive than its −OH and −CH2OH groups, and the graft reaction on the −NH2 group is calculated to be exothermic by 20.5kcal/mol with a free energy barrier of 42.6kcal/mol. The reaction cannot benefit from the presence of the intruded water molecule, but can be considerably assisted by 1-allyl-3-methylimidazolium chloride ([Amim]Cl) ionic liquid. The reaction catalyzed by the ion-pair is calculated to be exothermic by 36.5kcal/mol and the barrier is reduced to 29.3kcal/mol, which are further corrected to 28.0 and 29.1kcal/mol by considering the solvent effect of [Amim]Cl ionic liquid. Calculated results verified the experimental finding that imidazolium-based ionic liquids can promote the reaction of chitosan with epoxy compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.